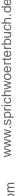


Effizienz und Effektivität von PV-Heimspeichersystemen Erfahrungen und Erkenntnisse aus Labortests

31. Symposium Photovoltaische Solarenergie

Christian Messner, Johannes Kathan, Johann Mayr

Energy Department


Electric Energy Systems

AIT Austrian Institute of Technology GmbH

Giefinggasse 2 | 1210 Vienna | Austria

T +43(0) 50550-6027 | M +43(0) 664 8251160 | F +43(0) 50550-6390

christian.messner@ait.ac.at | http://www.ait.ac.at

Motivation

Bedürfnisse des Käufers

- Nicht die "Katze im Sack" kaufen
- Validierte Angaben in Datenblättern
- Vergleichbarkeit zwischen Systemen

Bedürfnisse der Industrie

- Differenzierung hochqualitativer Systeme
- Standardisierte Test-Prozeduren
- Optimierung der Produkte f
 ür die Anwendung

Ziel & Lösungsansatz

- Entwicklung eines standardisierten
 Test-Portfolios für die Bewertung und
 Zertifizierung von PV-Heimspeichersystemen
- Prüfung erfolgt im Labor auf Gesamtsystemebene (Batterie, BMS, Leistungsumwandlungssystem, Regelung)

HIGH QUALIT

AIT-SmartEST Laboratory

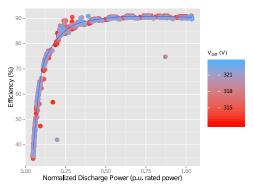
Effizienz & Effektivität

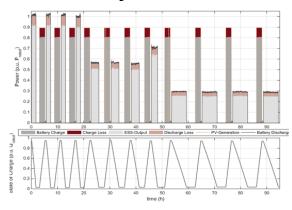
Effektivität von PV-Heimspeichersystemen

- Erhöhung des Eigenverbrauchs und der Autarkie, Senkung der Elektrizitätskosten
 - Systemdimensionierung (PV- und Batterieleistung / Batteriekapazität)
 - Individuelles Erzeugungs- und Lastprofil des Nutzers
 - Regelung Energiemanagementsystem (EMS)
 - Verluste vermindern die Effektivität

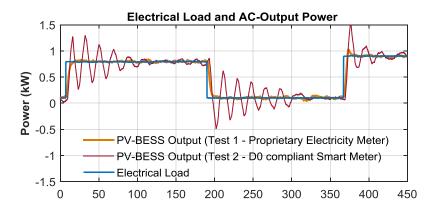
Systemgröße, sowie PV- und Lastprofil des Nutzers bestimmt Betrieb im Teillastbereich und Standby-Zeit

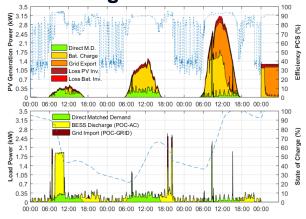
Effizienz von PV-Heimspeichersystemen


- Verlustarme Energieumwandlung
 - Verluste des MPP-Trackings
 - Verluste des Leistungsumwandlungssystems
 - Verluste der Batterie



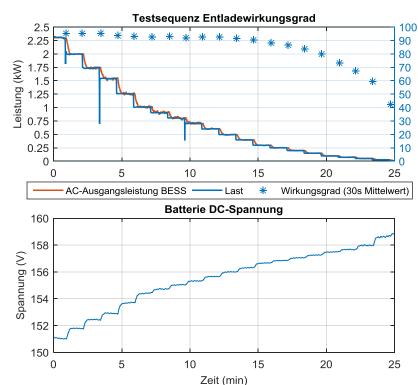
Test Portfolio – Ganzheitlicher Ansatz


1. Bewertung der Effizienz des Leistungsumwandlungssystems


2. Generische Bewertung der Batterieund Gesamtsystemeffizienz

3. Regelung und Energiemanagement

4. Effizienz und Effektivität in der Anwendung


Wirkungsgrad Leistungsumwandlungssystem

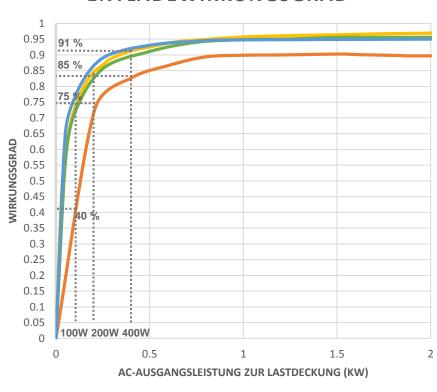
 Wirkungsgradbestimmung für Voll- und Teillast folgender Betriebsmodi:

- PV-Netzeinspeisung und MPPT
- Batterieladung aus PV-Erzeugung
- Batterieentladung zur Lastdeckung
- Standby Verbrauch

Herausforderungen Testgestaltung

- Berücksichtigung unterschiedlicher Betriebsmodi des Systems
- Spagat zwischen Systemzustand und Messwertaussage
- Batteriespannung abhängig vom Ladegrad, Leistung, verbauter Batteriemodulanzahl

Wirkungsgrad Leistungsumwandlungssystem


Erkenntnisse Wirkungsgradbestimmung

- Effiziente Systeme weisen nur eine geringe Abhängigkeit von der Batteriespannung auf.
- Hoher "One-Way" Spitzenwirkungsgrad
 Laden/Entladen η ~ 98 % möglich
- Lade/Entladewirkungsgrad im
 Teillastbereich < 400 W stark reduziert
 Entspricht Verbrauch in der Anwendung!
- Große Unterschiede zwischen verschiedenen Systemen festgestellt
- Herausforderung für den Hersteller bei der optimalen Systemauslegung

Erkenntnisse Standby-Verbrauch

- Verschiedene Standby Modi
- Bezug von Batterie oder Netz
- Getestete Systeme P = 20 bis 70 W

ENTLADEWIRKUNGSGRAD

DC-gekoppeltes Niedervoltsystem (48 - 60 V)

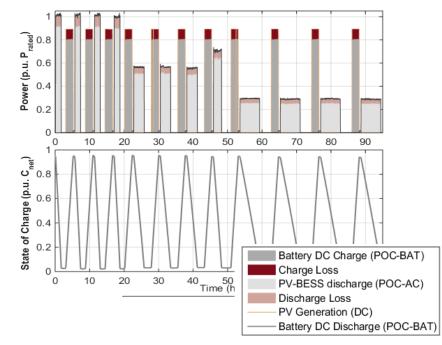
DC-gekoppeltes Hochvoltsystem (volle Batteriemodulanzahl > 400V)

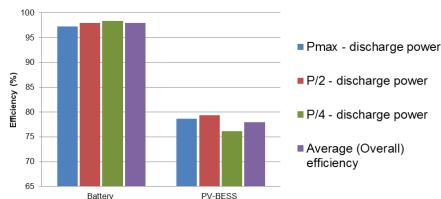
DC-gekoppeltes Hochvoltsystem (geringste Batteriemodulanzahl < 200V)</p>

AC-gekoppeltes Niedervoltsystem (48-60V)

Round-Trip Wirkungsgrad

- **Generische Bestimmung der Batterie** und Systemeffizienz
 - Bei vollständigen Lade/Entladezyklen

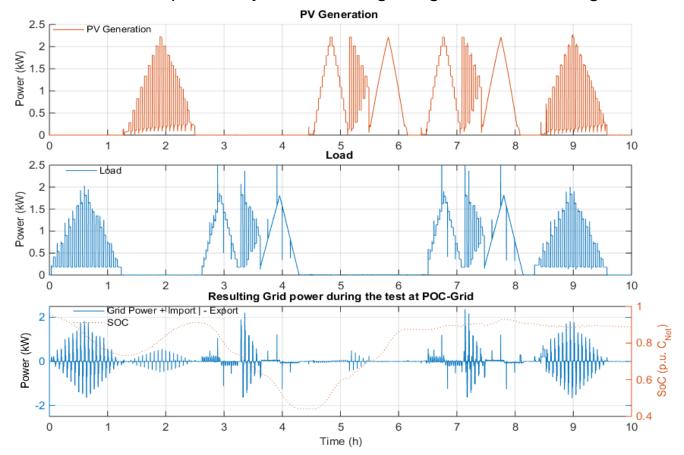

$$\eta = E_{\rm entladen} / E_{\rm geladen}$$


Herausforderungen Testgestaltung

- Wirkungsgrad muss über mehrere Vollzyklen bestimmt werden (Abweichungen Ladegradbestimmung)
- Mehrere Iterationsserien unterschiedlicher Entladeleistung

Erkenntnisse aus Testresultaten

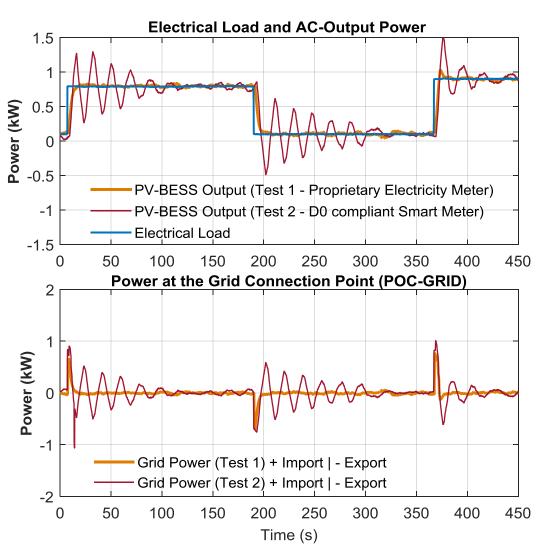
- Wirkungsgrad der Lithium-Ionen Batterie im Regelfall sehr hoch > 95 %
- Systemwirkungsgrad durch Verluste im Leistungsumwandlungssystem (<u>Lade/Entladeverluste!</u>) stark verringert
- Round-Trip Systemwirkungsgrad getesteter Systeme 60 – 90 %



PV-BESS

Effektivität Regelung

- Dynamische Testprofile: PV- und Lastsprünge, Stufen- und Rampen
 - Prüfung erfolgt innerhalb der Grenzen des Ladegrades (SoC) und Batterieleistung
 - Betriebsmodus Speichersystem: Nullregelung der Netzleistung

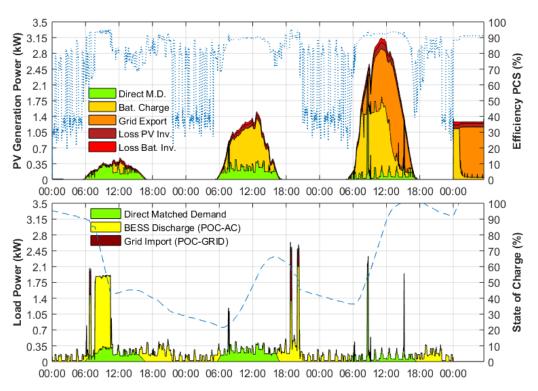

Effektivität Regelung

Bewertung

- Netzbezug/Einspeisung
- Einschwingzeit
- Genauigkeit

Erkenntnisse aus Testresultaten

- Großer Einfluss des Zählers (S0/D0...)
- Verzögerungszeit getesteter Systeme 5-30s
- Einschwingzeit (Oszillationen)
 bei schlechter Auslegung der Regelung deutlich länger
- Einschwingverhalten nicht konstant
- Zeitpunkt und Höhe des Lastsprungs hat Einfluss auf das Verhalten


Anwendungsnahe Tests

Effizienz und Effektivität in der Anwendung

- Test über mehrere Tage
- Emulation von anwendungsnahen, realen PV- und Lastprofilen im Labor

Bewertung

- Steigerung des Autarkiegrads durch das Speichersystem
- Effizienz des Gesamtsystems
- Funktionelle mehrtägige Prüfung

Beispiel eines anwendungsnahen Tests 3-Testtage mit anschließender Batterienachladung

Anwendungsnahe Tests

Herausforderungen

- Testprofil soll eine möglichst breite Masse an Nutzern repräsentieren
- Zeitliche Skalierbarkeit der Testresultate
- Systemeffizienz abhängig von Speichernutzung/Größe
 - Kleiner Speicher -> hohe Effizienz -> geringe Autarkie und vice versa

Lösungsansätze Testgestaltung und Analyse

- Mehrere Testprofile für verschiedene Nutzer bzw. Systemgröße
- Gewichtung aus Autarkiegrad und Effizienz

Weiterführende Analysen von PV- und Lastprofilen, bzw. Speicherdaten aus Feldtests für den Anwendungstest notwendig

- Ähnlich europäischen MPPT Wirkungsgrad: Einführung von gewichteten Wirkungsgraden hinsichtlich Leistungsverteilung (dynamische Gewichtungsfaktoren, abhängig von Systemgröße etc.)
- Simulation des Systems über die Nutzungsdauer auf Basis der ermittelten
 Wirkungsgrade und Verzögerungszeiten der Regelung im Labortest